Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees.

Identifieur interne : 000A27 ( Main/Exploration ); précédent : 000A26; suivant : 000A28

Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees.

Auteurs : Jia-Jia Chen [République populaire de Chine, Finlande] ; Ling-Yan Wang [République populaire de Chine] ; Juha Immanen [Finlande] ; Kaisa Nieminen [Finlande] ; Rachel Spicer [États-Unis] ; Yk Helariutta [Finlande, Royaume-Uni] ; Jing Zhang [Finlande] ; Xin-Qiang He [République populaire de Chine]

Source :

RBID : pubmed:31230359

Descripteurs français

English descriptors

Abstract

Tissue regeneration upon wounding in plants highlights the developmental plasticity of plants. Previous studies have described the morphological and molecular changes of secondary vascular tissue (SVT) regeneration after large-scale bark girdling in trees. However, how phytohormones regulate SVT regeneration is still unknown. Here, we established a novel in vitro SVT regeneration system in the hybrid aspen (Populus tremula × Populus tremuloides) clone T89 to bypass the limitation of using field-grown trees. The effects of phytohormones on SVT regeneration were investigated by applying exogenous hormones and utilizing various transgenic trees. Vascular tissue-specific markers and hormonal response factors were also examined during SVT regeneration. Using this in vitro regeneration system, we demonstrated that auxin and cytokinin differentially regulate phloem and cambium regeneration. Whereas auxin is sufficient to induce regeneration of phloem prior to continuous cambium restoration, cytokinin only promotes the formation of new phloem, not cambium. The positive role of cytokinin on phloem regeneration was further confirmed in cytokinin overexpression trees. Analysis of a DR5 reporter transgenic line further suggested that cytokinin blocks the re-establishment of auxin gradients, which is required for the cambium formation. Investigation on the auxin and cytokinin signalling genes indicated these two hormones interact to regulate SVT regeneration. Taken together, the in vitro SVT regeneration system allows us to make use of various molecular and genetic tools to investigate SVT regeneration. Our results confirmed that complementary auxin and cytokinin domains are required for phloem and cambium reconstruction.

DOI: 10.1111/nph.16019
PubMed: 31230359


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees.</title>
<author>
<name sortKey="Chen, Jia Jia" sort="Chen, Jia Jia" uniqKey="Chen J" first="Jia-Jia" last="Chen">Jia-Jia Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ling Yan" sort="Wang, Ling Yan" uniqKey="Wang L" first="Ling-Yan" last="Wang">Ling-Yan Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Immanen, Juha" sort="Immanen, Juha" uniqKey="Immanen J" first="Juha" last="Immanen">Juha Immanen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790</wicri:regionArea>
<wicri:noRegion>00790</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nieminen, Kaisa" sort="Nieminen, Kaisa" uniqKey="Nieminen K" first="Kaisa" last="Nieminen">Kaisa Nieminen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790</wicri:regionArea>
<wicri:noRegion>00790</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spicer, Rachel" sort="Spicer, Rachel" uniqKey="Spicer R" first="Rachel" last="Spicer">Rachel Spicer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, Connecticut College, New London, CT, 06320, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, Connecticut College, New London, CT, 06320</wicri:regionArea>
<wicri:noRegion>06320</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Helariutta, Yk" sort="Helariutta, Yk" uniqKey="Helariutta Y" first="Yk" last="Helariutta">Yk Helariutta</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31230359</idno>
<idno type="pmid">31230359</idno>
<idno type="doi">10.1111/nph.16019</idno>
<idno type="wicri:Area/Main/Corpus">000829</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000829</idno>
<idno type="wicri:Area/Main/Curation">000829</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000829</idno>
<idno type="wicri:Area/Main/Exploration">000829</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees.</title>
<author>
<name sortKey="Chen, Jia Jia" sort="Chen, Jia Jia" uniqKey="Chen J" first="Jia-Jia" last="Chen">Jia-Jia Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ling Yan" sort="Wang, Ling Yan" uniqKey="Wang L" first="Ling-Yan" last="Wang">Ling-Yan Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Immanen, Juha" sort="Immanen, Juha" uniqKey="Immanen J" first="Juha" last="Immanen">Juha Immanen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790</wicri:regionArea>
<wicri:noRegion>00790</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nieminen, Kaisa" sort="Nieminen, Kaisa" uniqKey="Nieminen K" first="Kaisa" last="Nieminen">Kaisa Nieminen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790</wicri:regionArea>
<wicri:noRegion>00790</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Spicer, Rachel" sort="Spicer, Rachel" uniqKey="Spicer R" first="Rachel" last="Spicer">Rachel Spicer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, Connecticut College, New London, CT, 06320, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, Connecticut College, New London, CT, 06320</wicri:regionArea>
<wicri:noRegion>06320</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Helariutta, Yk" sort="Helariutta, Yk" uniqKey="Helariutta Y" first="Yk" last="Helariutta">Yk Helariutta</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cambium (physiology)</term>
<term>Cytokinins (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Phloem (physiology)</term>
<term>Plant Vascular Bundle (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Regeneration (physiology)</term>
<term>Trees (genetics)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides indolacétiques (métabolisme)</term>
<term>Arbres (génétique)</term>
<term>Arbres (physiologie)</term>
<term>Cambium (physiologie)</term>
<term>Cytokinine (métabolisme)</term>
<term>Faisceau vasculaire des plantes (physiologie)</term>
<term>Gènes de plante (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Phloème (physiologie)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régénération (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytokinins</term>
<term>Indoleacetic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Cytokinine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Cambium</term>
<term>Faisceau vasculaire des plantes</term>
<term>Phloème</term>
<term>Populus</term>
<term>Régénération</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cambium</term>
<term>Phloem</term>
<term>Plant Vascular Bundle</term>
<term>Populus</term>
<term>Regeneration</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Modèles biologiques</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tissue regeneration upon wounding in plants highlights the developmental plasticity of plants. Previous studies have described the morphological and molecular changes of secondary vascular tissue (SVT) regeneration after large-scale bark girdling in trees. However, how phytohormones regulate SVT regeneration is still unknown. Here, we established a novel in vitro SVT regeneration system in the hybrid aspen (Populus tremula × Populus tremuloides) clone T89 to bypass the limitation of using field-grown trees. The effects of phytohormones on SVT regeneration were investigated by applying exogenous hormones and utilizing various transgenic trees. Vascular tissue-specific markers and hormonal response factors were also examined during SVT regeneration. Using this in vitro regeneration system, we demonstrated that auxin and cytokinin differentially regulate phloem and cambium regeneration. Whereas auxin is sufficient to induce regeneration of phloem prior to continuous cambium restoration, cytokinin only promotes the formation of new phloem, not cambium. The positive role of cytokinin on phloem regeneration was further confirmed in cytokinin overexpression trees. Analysis of a DR5 reporter transgenic line further suggested that cytokinin blocks the re-establishment of auxin gradients, which is required for the cambium formation. Investigation on the auxin and cytokinin signalling genes indicated these two hormones interact to regulate SVT regeneration. Taken together, the in vitro SVT regeneration system allows us to make use of various molecular and genetic tools to investigate SVT regeneration. Our results confirmed that complementary auxin and cytokinin domains are required for phloem and cambium reconstruction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31230359</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>224</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees.</ArticleTitle>
<Pagination>
<MedlinePgn>188-201</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16019</ELocationID>
<Abstract>
<AbstractText>Tissue regeneration upon wounding in plants highlights the developmental plasticity of plants. Previous studies have described the morphological and molecular changes of secondary vascular tissue (SVT) regeneration after large-scale bark girdling in trees. However, how phytohormones regulate SVT regeneration is still unknown. Here, we established a novel in vitro SVT regeneration system in the hybrid aspen (Populus tremula × Populus tremuloides) clone T89 to bypass the limitation of using field-grown trees. The effects of phytohormones on SVT regeneration were investigated by applying exogenous hormones and utilizing various transgenic trees. Vascular tissue-specific markers and hormonal response factors were also examined during SVT regeneration. Using this in vitro regeneration system, we demonstrated that auxin and cytokinin differentially regulate phloem and cambium regeneration. Whereas auxin is sufficient to induce regeneration of phloem prior to continuous cambium restoration, cytokinin only promotes the formation of new phloem, not cambium. The positive role of cytokinin on phloem regeneration was further confirmed in cytokinin overexpression trees. Analysis of a DR5 reporter transgenic line further suggested that cytokinin blocks the re-establishment of auxin gradients, which is required for the cambium formation. Investigation on the auxin and cytokinin signalling genes indicated these two hormones interact to regulate SVT regeneration. Taken together, the in vitro SVT regeneration system allows us to make use of various molecular and genetic tools to investigate SVT regeneration. Our results confirmed that complementary auxin and cytokinin domains are required for phloem and cambium reconstruction.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jia-Jia</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ling-Yan</ForeName>
<Initials>LY</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Immanen</LastName>
<ForeName>Juha</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-1098-4843</Identifier>
<AffiliationInfo>
<Affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nieminen</LastName>
<ForeName>Kaisa</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0001-7004-9422</Identifier>
<AffiliationInfo>
<Affiliation>Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spicer</LastName>
<ForeName>Rachel</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-1129-3932</Identifier>
<AffiliationInfo>
<Affiliation>Department of Botany, Connecticut College, New London, CT, 06320, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Helariutta</LastName>
<ForeName>Ykä</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-7287-8459</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-4463-7516</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Xin-Qiang</ForeName>
<Initials>XQ</Initials>
<Identifier Source="ORCID">0000-0002-1755-008X</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003583">Cytokinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003583" MajorTopicYN="N">Cytokinins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058526" MajorTopicYN="N">Plant Vascular Bundle</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="N">Regeneration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus </Keyword>
<Keyword MajorTopicYN="Y">auxin</Keyword>
<Keyword MajorTopicYN="Y">cambium</Keyword>
<Keyword MajorTopicYN="Y">cytokinin</Keyword>
<Keyword MajorTopicYN="Y">phloem</Keyword>
<Keyword MajorTopicYN="Y">vascular tissue regeneration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31230359</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16019</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T. 2011. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genetics 7: e1001312.</Citation>
</Reference>
<Reference>
<Citation>Bhalerao RP, Fischer U. 2014. Auxin gradients across wood-instructive or incidental? Physiologia Plantarum 151: 43-51.</Citation>
</Reference>
<Reference>
<Citation>Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y. 2003. APL regulates vascular tissue identity in Arabidopsis. Nature 426: 181-186.</Citation>
</Reference>
<Reference>
<Citation>Brown CL, Sax K. 1962. The influence of pressure on the differentiation of secondary tissues. American Journal of Botany 49: 683-691.</Citation>
</Reference>
<Reference>
<Citation>Che P, Lall S, Howell SH. 2007. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226: 1183-1194.</Citation>
</Reference>
<Reference>
<Citation>Chen JJ, Zhang J, He XQ. 2014. Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration. Physiologia Plantarum 151: 147-155.</Citation>
</Reference>
<Reference>
<Citation>Chen LQ, Sun BB, Xu L, Liu W. 2016a. Wound signaling: the missing link in plant regeneration. Plant Signaling & Behavior 11: e1238548.</Citation>
</Reference>
<Reference>
<Citation>Chen LQ, Tong JH, Xiao LT, Ruan Y, Liu JC, Zeng MH, Huang H, Wang JW, Xu L. 2016b. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. Journal of Experimental Botany 67: 4273-4284.</Citation>
</Reference>
<Reference>
<Citation>Cheng ZJ, Wang L, Sun W, Zhang Y, Zhou C, Su YH, Li W, Sun TT, Zhao XY, Li XG et al. 2013. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology 161: 240-251.</Citation>
</Reference>
<Reference>
<Citation>Correa LD, Troleis J, Mastroberti AA, Mariath JEA, Fett AG. 2012. Distinct modes of adventitious rooting in Arabidopsis thaliana. Plant Biology 14: 100-109.</Citation>
</Reference>
<Reference>
<Citation>Cui KM, Lu PZ, Liu QH, Li ZG. 1989. Regeneration of vascular tissues in Broussonetia papyrifera stems after removal of the xylem. IAWA Bulletin 10: 193-199.</Citation>
</Reference>
<Reference>
<Citation>Cui KM, Wu SQ, Wei LB, Little CHA. 1995. Effect of exogenous IAA on the regeneration of vascular tissues and periderm in girdled Betula pubescens stems. Chinese Journal of Botany 7: 17-23.</Citation>
</Reference>
<Reference>
<Citation>Du J, Xie HL, Zhang DQ, He XQ, Wang MJ, Li YZ, Cui KM, Lu MZ. 2006. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics 6: 881-895.</Citation>
</Reference>
<Reference>
<Citation>Efroni I, Mello A, Nawy T, Ip PL, Rahni R, DelRose N, Powers A, Satija R, Birnbaum KD. 2016. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165: 1721-1733.</Citation>
</Reference>
<Reference>
<Citation>Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM. 2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences, USA 106: 16529-16534.</Citation>
</Reference>
<Reference>
<Citation>Haberlandt G. 1902. Culturversuche mit isolierten Pflanzenzellen. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften. Abteilung 1, Mineralogie, Botanik, Zoologie, Anatomie, Geologie, Paläontologie 111: 69-92.</Citation>
</Reference>
<Reference>
<Citation>Hejatko J, Ryu H, Kim GT, Dobesova R, Choi S, Choi SM, Soucek P, Horak J, Pekarova B, Palme K et al. 2009. The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21: 2008-2021.</Citation>
</Reference>
<Reference>
<Citation>Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K. 2016. Plant regeneration: cellular origins and molecular mechanisms. Development 143: 1442-1451.</Citation>
</Reference>
<Reference>
<Citation>Immanen J, Nieminen K, Smolander OP, Kojima M, Serra JA, Koskinen P, Zhang J, Elo A, Mahonen AP, Street N et al. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology 26: 1990-1997.</Citation>
</Reference>
<Reference>
<Citation>Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M et al. 2017. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell 29: 54-69.</Citation>
</Reference>
<Reference>
<Citation>Kakani A, Li GS, Peng Z. 2009. Role of AUX1 in the control of organ identity during in vitro organogenesis and in mediating tissue specific auxin and cytokinin interaction in Arabidopsis. Planta 229: 645-657.</Citation>
</Reference>
<Reference>
<Citation>Karlberg A, Bako L, Bhalerao RP. 2011. Short day-mediated cessation of growth requires the downregulation of AINTEGUMENTALIKE1 transcription factor in hybrid aspen. PLoS Genetics 7.</Citation>
</Reference>
<Reference>
<Citation>Li ZL, Cui KM. 1988. Differentiation of secondary xylem after girdling. IAWA Bulletin 9: 375-383.</Citation>
</Reference>
<Reference>
<Citation>Li ZL, Cui KM, Yu CS, Chang XL. 1981. Anatomical studies of regeneration after ringing of Eucomma ulmoides. Acta Botanica Sinica 23: 6-13.</Citation>
</Reference>
<Reference>
<Citation>Liu JC, Sheng LH, Xu YQ, Li JQ, Yang ZN, Huang H, Xu L. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26: 1081-1093.</Citation>
</Reference>
<Reference>
<Citation>Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408.</Citation>
</Reference>
<Reference>
<Citation>Love J, Bjorklund S, Vahala J, Hertzberg M, Kangasjarvi J, Sundberg B. 2009. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proceedings of the National Academy of Sciences, USA 106: 5984-5989.</Citation>
</Reference>
<Reference>
<Citation>Melnyk CW, Schuster C, Leyser O, Meyerowitz EM. 2015. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Current Biology 25: 1306-1318.</Citation>
</Reference>
<Reference>
<Citation>Meng WJ, Cheng ZJ, Sang YL, Zhang MM, Rong XF, Wang ZW, Tang YY, Zhang XS. 2017. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29: 1357-1372.</Citation>
</Reference>
<Reference>
<Citation>Mwange KN, Hou HW, Cui KM. 2003. Relationship between endogenous indole-3-acetic acid and abscisic acid changes and bark recovery in Eucommia ulmoides Oliv. after girdling. Journal of Experimental Botany 54: 1899-1907.</Citation>
</Reference>
<Reference>
<Citation>Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tahtiharju S, Elo A, Decourteix M, Ljung K et al. 2008. Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences, USA 105: 20032-20037.</Citation>
</Reference>
<Reference>
<Citation>Nishihama R, Ishizaki K, Hosaka M, Matsuda Y, Kubota A, Kohchi T. 2015. Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. Journal of Plant Research 128: 407-421.</Citation>
</Reference>
<Reference>
<Citation>Pang Y, Zhang J, Cao J, Yin SY, He XQ, Cui KM. 2008. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv. Journal of Experimental Botany 59: 1341-1351.</Citation>
</Reference>
<Reference>
<Citation>Pernisova M, Klima P, Horak J, Valkova M, Malbeck J, Soucek P, Reichman P, Hoyerova K, Dubova J, Friml J et al. 2009. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proceedings of the National Academy of Sciences, USA 106: 3609-3614.</Citation>
</Reference>
<Reference>
<Citation>Randall RS, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee JY, Kakimoto T et al. 2015. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biology Open 4: 1229-1236.</Citation>
</Reference>
<Reference>
<Citation>Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP, Sandberg G. 2003. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proceedings of the National Academy of Sciences, USA 100: 10096-10101.</Citation>
</Reference>
<Reference>
<Citation>Sena G, Wang XN, Liu HY, Hofhuis H, Birnbaum KD. 2009. Organ regeneration does not require a functional stem cell niche in plants. Nature 457: 1150-1153.</Citation>
</Reference>
<Reference>
<Citation>Skoog F, Miller CO. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology 11: 118-130.</Citation>
</Reference>
<Reference>
<Citation>Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Sánchez Rodríguez F, Wu MF, Solé-Gil A, Leal Gavarrón M, Siligato R, Miyashima S et al. 2019. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565: 485-489.</Citation>
</Reference>
<Reference>
<Citation>Spicer R, Tisdale-Orr T, Talavera C. 2013. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus. PLoS ONE 8: e72499.</Citation>
</Reference>
<Reference>
<Citation>Uggla C, Moritz T, Sandberg G, Sundberg B. 1996. Auxin as a positional signal in pattern formation in plants. Proceedings of the National Academy of Sciences, USA 93: 9282-9286.</Citation>
</Reference>
<Reference>
<Citation>Vatén A, Dettmer J, Wu S, Stierhof Y, Miyashima S, Yadav RY, Roberts CJ, Campilho A, Bulone V, Lichtenberger R et al. 2011. Callose biosynthesis regulates symplastic trafficking during root development. Developmental Cell 21: 1144-1155.</Citation>
</Reference>
<Reference>
<Citation>Xie B, Wang XM, Zhu MS, Zhang ZM, Hong ZL. 2011. CalS7 encodes a callose synthase responsible for callose deposition in the phloem. The Plant Journal 65: 1-14.</Citation>
</Reference>
<Reference>
<Citation>Xu L, Huang H. 2014. Genetic and epigenetic controls of plant regeneration. Mechanism of Regeneration 108: 1-33.</Citation>
</Reference>
<Reference>
<Citation>Zhang J, Gao G, Chen JJ, Taylor G, Cui KM, He XQ. 2011. Molecular features of secondary vascular tissue regeneration after bark girdling in Populus. New Phytologist 192: 869-884.</Citation>
</Reference>
<Reference>
<Citation>Zhang J, Nieminen K, Serra JAA, Helariutta Y. 2014. The formation of wood and its control. Current Opinion in Plant Biology 17: 56-63.</Citation>
</Reference>
<Reference>
<Citation>Zhao XY, Su YH, Zhang CL, Wang L, Li XG, Zhang XS. 2013. Differences in capacities of in vitro organ regeneration between two Arabidopsis ecotypes Wassilewskija and Columbia. Plant Cell Tissue and Organ Culture 112: 65-74.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
<li>Royaume-Uni</li>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
<li>Pékin</li>
<li>Uusimaa</li>
</region>
<settlement>
<li>Cambridge</li>
<li>Helsinki</li>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université d'Helsinki</li>
<li>Université de Cambridge</li>
<li>Université de Pékin</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Pékin">
<name sortKey="Chen, Jia Jia" sort="Chen, Jia Jia" uniqKey="Chen J" first="Jia-Jia" last="Chen">Jia-Jia Chen</name>
</region>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<name sortKey="Wang, Ling Yan" sort="Wang, Ling Yan" uniqKey="Wang L" first="Ling-Yan" last="Wang">Ling-Yan Wang</name>
</country>
<country name="Finlande">
<region name="Uusimaa">
<name sortKey="Chen, Jia Jia" sort="Chen, Jia Jia" uniqKey="Chen J" first="Jia-Jia" last="Chen">Jia-Jia Chen</name>
</region>
<name sortKey="Chen, Jia Jia" sort="Chen, Jia Jia" uniqKey="Chen J" first="Jia-Jia" last="Chen">Jia-Jia Chen</name>
<name sortKey="Helariutta, Yk" sort="Helariutta, Yk" uniqKey="Helariutta Y" first="Yk" last="Helariutta">Yk Helariutta</name>
<name sortKey="Helariutta, Yk" sort="Helariutta, Yk" uniqKey="Helariutta Y" first="Yk" last="Helariutta">Yk Helariutta</name>
<name sortKey="Immanen, Juha" sort="Immanen, Juha" uniqKey="Immanen J" first="Juha" last="Immanen">Juha Immanen</name>
<name sortKey="Immanen, Juha" sort="Immanen, Juha" uniqKey="Immanen J" first="Juha" last="Immanen">Juha Immanen</name>
<name sortKey="Nieminen, Kaisa" sort="Nieminen, Kaisa" uniqKey="Nieminen K" first="Kaisa" last="Nieminen">Kaisa Nieminen</name>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Spicer, Rachel" sort="Spicer, Rachel" uniqKey="Spicer R" first="Rachel" last="Spicer">Rachel Spicer</name>
</noRegion>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Helariutta, Yk" sort="Helariutta, Yk" uniqKey="Helariutta Y" first="Yk" last="Helariutta">Yk Helariutta</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31230359
   |texte=   Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31230359" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020